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Abstract. The WDVV equations of associativity in two-dimensional topological field theory
are completely integrable third-order Monge–Ampère equations which admit bi-Hamiltonian
structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure,
whereas in the theory of WDVV equations none of the independent variables merits such a
distinction. WDVV equations admit very different alternative Hamiltonian structures under
different possible choices of the time variable, but all these various Hamiltonian formulations can
be brought together in the framework of the covariant theory of symplectic structure. They can be
identified as different components of the covariant Witten–Zuckerman symplectic 2-form current
density where a variational formulation of the WDVV equation that leads to the Hamiltonian
operator through the Dirac bracket is available.

1. Equations of associativity

In two-dimensional (2D) topological field theory Witten [1, 2] has shown that model
independentn-point correlation functions follow recursively from the 2- and 3-point
correlation functions that serve to define a non-degenerate flat metric and structure functions
of a Frobenius algebra. These are the principal objects in this theory and they can be
expressed as third derivatives of a generating function

cijk = ∂3F

∂ti ∂tj ∂tk
(1)

whereF is the free energy [3]. One of the independent variables, sayt1, is singled out to
serve in the definition of the metric

c1ij ≡ ηij (2)

which is assumed to be non-degenerate. The structure functions satisfy a Frobenius algebra
and the conditions of associativity

cmi[j η
mn ck]ln = 0 (3)

result in third-order Monge–Amp̀ere equations which are known as WDVV equations.
Indices enclosed by square parentheses are skew-symmetrized.

Dubrovin [4] has given a systematic account of WDVV equations of associativity which
are completely integrable systems. They admit bi-Hamiltonian structure [5, 6] which also
provides proof of their complete integrability through the theorem of Magri [7]. However,
in the discussion of Hamiltonian structure time, which can be identified to be any one of
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724 J Kalaycı and Y Nutku

t i , i 6= 1, is necessarily singled out whereas in the general theory of WDVV equations no
such distinction exists. To give an example, consider the free energy

F1 = 1
2(t

1)2t2+ 1
2t

1(t3)2+ f (t2, t3) (4)

that through the identification

t2 = x t3 = t (5)

results in Dubrovin’s equation of associativity

fttt + fxxxfttx − f 2
txx = 0. (6)

By a trivial interchange in the roles oft andx, alternatively if in place of (5) we make the
identification

t2 = t t3 = x (7)

then we are led to

ftttftxx − f 2
t tx + fxxx = 0 (8)

which should be the same equation of associativity as there is no distinction between the
independent variablest andx that stems from 2D topological field theory itself. However,
from the point of view of Hamiltonian structure, equations (6) and (8) are radically different.
The bi-Hamiltonian structure of (6) which is based on the results of [8] and [9] was given
in [5], and in this paper we present the bi-Hamiltonian structure of (8). We find that the
Hamiltonian operators appropriate to (8) are quite different from those obtained for (6),
however, and we further show that they can be identified as different aspects of the same
structure when we consider them in the framework of the covariant Witten–Zuckerman [10]
formulation of symplectic structure. Considerations of covariant symplectic structure take
the variational formulation as their starting point. For WDVV equations only the Lagrangian
that yields their second Hamiltonian structure through Dirac’s theory of constraints [11] is
known, and therefore this part of our discussion will necessarily be restricted. We show
that the second Hamiltonian operators for equations (6) and (8) are simply the inverse of
the t andx components of the Witten–Zuckerman symplectic current 2-form for only one
of these equations.

Exactly the same situation holds for the WDVV equation that follows from the free
energy

F2 = 1
2(t

1)2t3+ 1
2t

1(t2)2− 1
2(t

1)2t2+ f (t2, t3) (9)

which through the identification (5) leads to

fttt + ftttfxxx − fttxftxx + ftttftxx − f 2
xtt + fxxxfxtt − f 2

xxt = 0 (10)

and the bi-Hamiltonian structure of this equation was presented in [6]. With the same free
energy the opposite identification (7) results in

ftttfxxx − fttxftxx + fxxxfxtt − f 2
xxt + ftttftxx − f 2

xtt + fxxx = 0 (11)

as the WDVV equation of associativity. Once again we find that the bi-Hamiltonian structure
of equation (11) is different from the earlier results obtained for (10) but they can be
recognized as different components of the closed conserved current 2-form in the covariant
formulation of symplectic structure.
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2. System of evolution equations

In earlier literature [12] Monge–Amp̀ere equations which are second-order partial differential
equations consisting of an appropriate sum of linear terms and the Hessian were discussed
in the framework of linear equations proper. The reason for this lies in the fact that the
initial value problem for hyperbolic Monge–Ampère equations is identical to that of the
second-order linear equation [13] in spite of the severe nonlinearities introduced by the
Hessian. WDVV equations of associativity are of third order but they consist of a sum of
linear terms and the minor determinants of the third-order Hankelian

H(u, t, x) = detminor

{
fttt fttx ftxx

fttx ftxx fxxx

}
(12)

closely analogous to the case of Monge–Ampère equations. Therefore, it seems reasonable
to conjecture that the initial value problem for WDVV equations is qualitatively the same
as the third-order linear equation. This is particularly important in the discussion of the
Hamiltonian structure of WDVV equations where we use the techniques originally developed
for real Monge–Amṕere equations [14]. For this purpose we need to cast the WDVV
equation into the form of a triplet of evolution equations. Introducing the usual auxiliary
variables

a = fxxx b = fxxt c = fxtt (13)

we have in place of the WDVV equation (8) the set of evolution equations

at = bx bt = cx
ct = ex e ≡ c2− a

b
(14)

which consists of equations of hydrodynamic type [15]. We note that such a decomposition
of equation (8) is not unique but this particular choice of auxiliary variables is useful because
the Hamiltonian structure of equations of hydrodynamic type is a well developed subject.
In the case of equations (14) the system is linearly degenerate and it will be necessary to use
the results of Ferapontov [16] on the Hamiltonian structure of non-diagonizable equations
of hydrodynamic type for which Riemann invariants do not exist. From equations (14) it
is manifest thata, b, c are conserved densities and there are two others

P = bD−1c

E = cD−1bD−1c +D−1aD−1b (15)

which consist of momentum and energy. There exist no further conserved quantities of
hydrodynamic type as equations (14) are non-diagonizable. Here and in the followingD−1

stands for the inverse of the total derivative operatorD = d/dx and its precise definition
can be found in [17].

3. Bi-Hamiltonian structure

We first state the principal result we present about equation (8).

Theorem 1. Equations (14) can be written as a bi-Hamiltonian system

J0 δH0 = J1 δH1 (16)
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where δ denotes the variational derivative with respect toa, b, c and the Hamiltonian
operators given by

J0 =
 2aD + 2Da 3bD + bx 2cD

3bD + 2bx cD +Dc eD

2Dc De −3D

 (17)

J1 =

−D
3 0 0

0 0 D2 1
b
D

0 D 1
b
D2 D 1

b
D c
b
D +D c

b
D 1
b
D

 (18)

are compatible so that according to Magri’s theorem [7] we have a completely integrable
system.

The Hamiltonian functions that yield the equations of motion are integrals of the
densitiesH0 = b andH1 = E , respectively.

4. Spectral problem

The general framework for casting WDVV equations into the form of a spectral problem
was given by Dubrovin [4]. In the case of equation (8), or rather equations (14), these
considerations yield the Lax pair

9x = zA9 9t = zB9

A =
 0 1 0

a 0 b

b 0 c

 B =
 0 0 1

b 0 c

c 1 e

 (19)

wherez is the spectral parameter and the compatibility conditions

At = Bx [A,B] = 0

are satisfied by virtue of equations (14). From the compatibility conditions it follows that
the rootsu1, u2, u3 of the characteristic equation

det(λI − A) = λ3− cλ2− aλ+ ac − b2 = 0 (20)

are conserved Hamiltonian densities for equations (14).

5. First Hamiltonian structure

The easiest way to find the first Hamiltonian structure of equations (14) is to transform to
a set of new dependent variables which consist of the roots of the cubic (20) because the
Hamiltonian operator then assumes the form of a first-order homogeneous operator with
constant coefficients. The relationship between the roots of this cubic to the hydrodynamic
variablesa, b, c is given by

a = −β α = u1+ u2+ u3

b = ∓
√
γ − αβ β = u1u2+ u2u3+ u3u1

c = α γ = u1u2u3 (21)

according to the formulae of Viète. In these variables the equations of motion (14) assume
the form

uit =
(
(ui)2+ β√
γ − αβ

)
x

i = 1, 2, 3 (22)
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of Hamilton’s equations with the Hamiltonian operator

J0 = 1

2

 1 −1 −1

−1 1 −1

−1 −1 1

D (23)

and the Hamiltonian density

H0 = b =
√
u1u2u3− (u1+ u2+ u3)(u1u2+ u2u3+ u3u1).

A lengthy but straightforward transformation of this operator into the original auxiliary
variables yields the result in equation (17). The verification of the Jacobi identities for
Hamiltonian operator (17) is straightforward. For this operator the conserved quantity1

2a

results in the trivial flow whilec is a Casimir.

6. Variational principle

The most direct way of obtaining the second Hamiltonian structure of equation (8) is through
the construction of a variational principle. The auxiliary variablesa, b, c are not best suited
for this purpose, instead it turns out that in terms of

p = fx q = ft r = ftt (24)

the Lagrangian is given by a simple local expression. The equations of motion are

pt = qx qt = r rt = r2
x − pxx
qxx

(25)

and it can be readily verified that the variational principle with the Lagrangian density

L = 1
2pxpt + qxrxqt − 1

2q
2
x rt + pqxx + 1

2r
2qxx (26)

yields equations (25). We note that this Lagrangian is linear in the velocities so that the
Hessian vanishes identically and we have a degenerate Lagrangian system. The passage to
its Hamiltonian formulation requires the use of Dirac’s theory of constraints [11].

7. Dirac bracket

The Dirac bracket which replaces the Poisson bracket for systems subject to constraints
plays a central role in the construction of the Hamiltonian operator for integrable systems
[18]. This construction is directly applicable to the WDVV equation (8) as we shall now
detail. Since the Lagrangian (26) is degenerate the canonical momenta cannot be inverted
for the velocities and following Dirac we introduce the definition of the momenta

φ1 = πp − 1
2px φ2 = πq − qxrx φ3 = πr + 1

2q
2
x (27)

as primary constraints. Calculating the Poisson bracket of the constraints

{φ1(x), φ1(y)} = 1
2δx(y − x)− 1

2δy(x − y)
{φ1(x), φ2(y)} = 0

{φ1(x), φ3(y)} = 0

{φ2(x), φ2(y)} = rxδx(y − x)− ryδy(x − y)
{φ2(x), φ3(y)} = qxδx(y − x)+ qyδy(x − y)
{φ3(x), φ3(y)} = 0 (28)
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we find that the constraints (27) are second class as they do not vanish modulo the constraints
themselves. This is the case with almost all completely integrable systems. The total
Hamiltonian density of Dirac is given by

HT = H1+
3∑
i=1

ciφi H1 = − 1
2r

2qxx − pqxx (29)

whereci are Lagrange multipliers. The expression forH1 is obtained from the Lagrangian
(26) by Legendre transformation. The conditions that the constraints are maintained in
time {φi(x),HT } = 0 give rise to no further constraints but rather determine the Lagrange
multipliers

c1 = qx c2 = r c3 = r2
x − pxx
qxx

and we have no secondary constraints. From equation (29) we find that the total Hamiltonian
is given by

HT = qxπp + rπq + r
2
x − pxx
qxx

(
πr + 1

2
q2
x

)
+ 1

2
pxqx (30)

in terms of the full set of canonical variables. For systems subject to second-class constraints
we can solve the constraints to eliminate the canonical momenta because in Dirac’s theory
second-class constraints hold as strong equations. As a result the total Hamiltonian density
is simplyH1 which up to a total derivative is the same asE in equation (15).

Given any two smooth functionalsA,B the Dirac bracket is defined by

{A(x), B(y)}D = {A(x), B(y)} −
∫
{A(x), φi(z)}J ik(z, w){φk(w), B(y)} dz dw (31)

whereJ ik is the inverse of the matrix of Poisson brackets of the constraints. From the
definition of the inverse∫

{φi(x), φk(z)}J kj (z, y)dz = δji δ(x − y)

we end up with a set of differential equations forJ ik which can be solved to yield

J 11(x, y) = −θ(x − y)
J 12(x, y) = 0

J 13(x, y) = 0

J 22(x, y) = 0

J 23(x, y) = − 1

qxx
δ(x − y)

J 33(x, y) = −2
rx

q2
xx

δx(x − y)+ rxqxxx
q3
xx

δ(x − y) (32)

where the Heaviside unit step function is denoted byθ .

8. Second Hamiltonian structure

The transition from the Dirac bracket to the Hamiltonian operator is given by

{ui(x), uk(y)}D = −J ik(x, y) ≡ −J ik(x)δ(x − y) (33)
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since the Poisson brackets ofui vanish and the constraints are linear in the momenta.
From equations (33) and (32) it follows that the Hamiltonian operator corresponding to the
degenerate Lagrangian (26) is simply

J1 = −


D−1 0 0

0 0 1
qxx

0 − 1
qxx

1
qxx

D
rx
qxx
+ rx
qxx

D 1
qxx

 (34)

and the proof of the Jacobi identities for the Hamiltonian operator (34) follows from the
fact that according to equation (33) it is simply a reformulation of the Dirac bracket for
which there is a general proof of the Jacobi identities [19]. The Hamiltonian operator (34)
looks non-local but this is only superficial and related to the choice of variablesp, q and
r. If we revert to the original auxiliary variables (13)

a = pxx b = qxx c = rx
the Hamiltonian operator (34) is transformed to the form (18) which is a local homogeneous
third-order operator of hydrodynamic type that was studied in [20, 21].

9. Symplectic representation

The symplectic formulation of equations (25) that provides the dual description to the
Hamiltonian operator (34) requires the inverse of this operator. However, we have just seen
that this Hamiltonian operator is derived from the Dirac bracket which in turn was obtained
from the inverse of the Poisson bracket of the constraints. The matrix of the symplectic
2-form density can, therefore, be obtained directly from equations (28) and we get

ωij = −
D 0 0

0 Drx + rxD −qxx
0 qxx 0

 (35)

which can be verified to be the inverse of (34). The symplectic 2-form density is then given
by

ω = − 1
2 dp ∧ dpx − rx dq ∧ dqx + qxx dq ∧ dr (36)

and since this 2-form is closed, using Poincaré’s lemma we can write

ω = dα α = 1
2px dp − rqxx dq (37)

in a local neighbourhood. In terms off that enters into the original formulation of the
WDVV equation (8) the symplectic 2-form (36) reduces to

ω = 2ftx dftt ∧ dftx − 1
2 dfx ∧ dfxx (38)

using the definitions (24) and discarding a total derivative.

10. Darboux’s theorem

The transformation of the third-order Hamiltonian operator (18) to the canonical form

J1 = −
 0 0 1

0 1 0

1 0 0

D (39)
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required by an as yet unproved generalization of Darboux’s theorem for third-order
Hamiltonian operators is usually given by a differential substitution where the Casimirs
of J1 play a central role. For the Hamiltonian operator (18) the Casimirs are

s1 = D−1b s2 = D−1a s3 = bD−1c (40)

and the differential substitution required by Darboux’s theorem is obtained by inverting
equations (40). Indeed it can be readily verified that under this transformation of variables
the second Hamiltonian operator (18) is transformed to the form (39) which is proof of
Darboux’s theorem for this case. Finally, we note that in terms of the Casimir variables the
equations of motion assume the form

s1
t =

(
s3

s1
x

)
x

s2
t = s1

x

s3
t =

[
s3

s1
x

(
s3

s1
x

)
x

− s2

]
x

(41)

of an integrable coupled dispersive system.

11. Summary of earlier results

In order to compare the results on bi-Hamiltonian formulations of equations (8) and (6) we
need to summarize the results of [5] on equation (6). In this case

e ≡ ac − b2 (42)

replaces the definition of the same quantity in equations (14). The Hamiltonian operators
are given by

J ′0 =

−
3
2D

1
2Da Db

1
2aD

1
2(Db + bD) 3

2cD + cx
bD 3

2Dc − cx (b2− ac)D +D(b2− ac)

 (43)

J ′1 =
 0 0 D3

0 D3 −D2aD

D3 −DaD2 D2bD +DbD2+DaDaD

 (44)

and the corresponding densities of Hamiltonian functions

H′0 = c H′1 = − 1
2a(D

−1b)2− (D−1b)(D−1c) (45)

yield the system (14) with this redefinition ofe. These Hamiltonian operators are also
compatible. The symplectic 2-form obtained from the inverse of (44) is given by

ω′ = dp ∧ dr − qxx dp ∧ dpx + pxx dp ∧ dqx + 1
2 dq ∧ dqx (46)

which in terms off in equation (6) is simply

ω′ = 2ftt dftx ∧ dftt + 3
2 dfx ∧ dftx (47)

where we have again discarded a total derivative.
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12. Covariant formulation

We have noted at the beginning that equations (8) and (6) are obtained by a simple flip
of the independent variables. However, any comparison of the Hamiltonian operators (43)
and (44) with (17) and (18) yields nothing more than a complete mismatch even though
they arise from what is in fact the same WDVV equation. The fact that the Hamiltonian
operators for these equations look very different forces us to look for a unifying framework
which exists in the covariant formulation of symplectic structure [10]. Indeed these different
looking Hamiltonian structures are simply different components of the Witten–Zuckerman
closed, conserved current 2-form. In order to show that this is indeed the case we start with
the Lagrangian for, say, equation (8)

L = 1
2f

2
t t ftxx − f 2

txfttt − 1
2fxxftx (48)

expressed in terms of the original variablef . This is the same as the Lagrangian (26) up to
a total derivative. The Witten–Zuckerman current 2-formωµ which is closed and conserved

ωxx + ωtt = 0 dωµ = 0 µ = x, t (49)

can be obtained directly from the Lagrangian (48). We find

ωx = 2ftt dftx ∧ dftt + 3
2 dfx ∧ dftx

ωt = 2ftx dftt ∧ dftx − 1
2 dfx ∧ dfxx (50)

which satisfies the properties of the symplectic 2-form listed in equations (49). If we go
back to equations (38) and (47) for the symplectic 2-forms appropriate to equations (8) and
(6) expressed in terms off alone, then we find simply

ωx = ω′ ωt = ω (51)

as we should expect, since these WDVV equations are related by a flip oft and x.
Unfortunately, the lack of a variational formulation of WDVV equations (8) or (6) that yields
their first Hamiltonian structure through Dirac’s theory of constraints makes it impossible
to present a similar covariant description of their first symplectic structure.

13. Second pair of WDVV equations

In order to discuss the Hamiltonian structure of the WDVV equation (11) we need to redefine

e ≡ b2+ c2+ bc − ac − a
a + b (52)

in the system of evolution equations (14). The bi-Hamiltonian structure of these equations
of hydrodynamic type is obtained through the same process we presented earlier and the
result can be summarized in the following.

Theorem 2. The equations of hydrodynamic type (14) withe given by (52) admit
bi-Hamiltonian structure (16) with Hamiltonian operators

J̃0 =

 −aD −Da 1
2D(a − b)− bD Db − cD

1
2(a − b)D −Db 1

2(b − c)D + 1
2D(b − c) 1

2(c − e)D +Dc
bD −Dc 1

2D(c − e)+ cD 3
2D +De + eD

 (53)
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J̃1 =



−D3 D3 −D3

D3 −D3 D2a + b + 1
a + b D

−D3 Da + b + 1
a + b D2 D 1

a + bD
b + c + 1

2
a + b D

+Db + c +
1
2

a + b D 1
a + bD

−Da + b + 1
a + b Da + b + 1

a + b D


(54)

and the Hamiltonian functions which are integrals of the densitiesH̃0 = c and

H̃1 = (c − b − a)D−1bD−1c + (b + 1)D−1aD−1b + cD−1aD−1c + 1
2(D

−1a)2 (55)

yield the equations of motion. The Hamiltonian operatorsJ̃0 and J̃1 are compatible so that
the theorem of Magri is applicable in this case as well.

Comparison of these results with the bi-Hamiltonian structure of equation (10) presented
in [6] again results in a mismatch which, however, is not as severe as before since
equations (10) and (11) resemble each other rather closely. In order to show that these
different Hamiltonian structures simply correspond to different components of the Witten–
Zuckerman 2-form first we note that the variational principle with the Lagrangian

L̃ = − 1
2(f

2
xx + ftxfxx)+ fxxxfttfxx + ftxxftxftt − fxxxfttftx − ftttftxfxx − 1

2ftttf
2
tx

(56)

yields equation (11), or more precisely we get a linear combination of both thet and x
derivatives of equation (11). This Lagrangian can be rewritten in terms of the auxiliary
variables (24)

L̃ = (−qxqxx + qxrx − rpxx + pxqxx + 1
2px)pt − ( 1

2q
2
x + pxqx)rt

+(qxrx − qxpxx + pxpxx + pxrx)qt − qxrrx − 1
2p

2
x

+qx qxxr + qxpxxr − pxqxqxx − pxrrx − qxpx (57)

which yields a triplet of evolution equations, the integrability conditions of which result in
equation (11).

The symplectic 2-form obtained from the inverse of the Hamiltonian operator (54) is
given by

ω̃ = [(rx + qxx) dpx + (rx − pxx) dqx − (pxx + qxx) dr] ∧ (dp + dq)− 1
2 dp ∧ dpx (58)

and this is rather similar to the result

ω̃′ = [(rx + qxx) dpx + (rx − pxx) dqx − (1+ pxx + qxx) dr] ∧ (dp + dq)+ 1
2 dq ∧ dqx

(59)

for equation (10) that was obtained earlier in [6]. The Witten–Zuckerman symplectic 2-form
that follows from the Lagrangian (56) is

ωx = 2(ftxx − fttx − 3
4) dftx ∧ dfx − (fttx + 1) dfxx ∧ dfx

+(2ftxx − fxxx) dftt ∧ dfx + (2ftt + fxx) dfxx ∧ dftt
+2ftt dftx ∧ dftt − fttx dftx ∧ dft + ftxx dftt ∧ dft − 2ftt dftx ∧ dfxx
= ω̃′

ωt = 1
2 dfxx ∧ dfx + [(fttx + ftxx) dfxx + (fttx − fxxx) dftx

−(fxxx + ftxx) dftt ] ∧ (dfx + dft )

= ω̃ (60)
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where ω̃, ω̃′ are given by equations (59) and (58), respectively. This is exactly the same
final result (51) we found earlier for equations (8) and (6).

14. Conclusion

The bi-Hamiltonian structure of the WDVV equations of associativity is expressed by
different pairs of Hamiltonian operators depending on which independent variable in the
free energy is chosen to play the role of time. However, we have shown that the symplectic
2-forms which can be obtained from the second Hamiltonian operators are simply different
components of the covariant Witten–Zuckerman conserved current symplectic 2-form. We
have been able to obtain this result only for the second Hamiltonian structure because only
in this case does there exist a degenerate Lagrangian subject to second-class constraints
which through the Dirac bracket yield the Hamiltonian operator. The lack of a variational
principle for the WDVV equations that yields their different first Hamiltonian structures
makes it impossible to discuss them together in the framework of the covariant theory of
symplectic structure.
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